The birth, life and death of an Iron Age house at Tel ‘Eton, Israel

Avraham Faust, Hayah Katz, Yair Sapir, Assaf Avraham, Ofer Marder, Guy Bar-Oz, Ehud Weiss, Chen Auman-Chazan, Anat Hartmann-Shenkmman, Tehila Sadel, Oren Vilnay, Michael Tsesarsky, Pariente Sarah, Oren Ackermann, Natasha Timmer, Ofir Katz, Dafna Langgut & Mordechay Benzaquen

To link to this article: https://doi.org/10.1080/00758914.2017.1388027

Published online: 13 Nov 2017.
The birth, life and death of an Iron Age house at Tel ‘Eton, Israel

Avraham Faust 1, Hayah Katz 2, Yair Sapir 1, Assaf Avraham 1, Ofer Marder 3, Guy Bar-Oz 4, Ehud Weiss 1, Chen Auman-Chazan 1, Anat Hartmann-Shenkman 1, Tehila Sadiel 1, Oren Vilnay 5, Michael Tsesarsky 5, Pariente Sarah 6, Oren Ackermann 1,10, Natasha Timmer 3, Ofir Katz 7,8, Dafna Langgut 9 and Mordechay Benzaquen 9

Using a biographic-like approach, this article presents the initial results of the study of an elite Iron Age house at Tel ‘Eton, from its conception, through its birth and life, to its death and decomposition. Massive preparations preceded the construction of the house, and the latter incorporated continuous foundations, and quality building materials, including ashlar stones. The building was pre-planned, and some of the original rooms had two doorways leading to them, in order to enable easy future sub-division, without endangering the structure’s physical integrity.

The house evolved over the years, and its inner division changed overtime, reflecting the changes in the life-cycle of the extended family that lived in it. The house was destroyed in heavy conflagration in the late 8th century BC; hundreds of artifacts and complete vessels were unearthed below and within the debris, allowing for a detailed reconstruction of the use of space within the building on the eve of its destruction and the processes that accompanied its destruction (perhaps even ‘execution’), and subsequent collapse.

Keywords four-room houses, use of Space, construction, destruction, household archaeology

Introduction

In the late 8th century BC the Assyrian army marched into Judah causing havoc and destruction. The Shephelah (Judean lowlands) was devastated; practically every site in the area was thoroughly destroyed. Many never recovered (Faust 2008; Tadmor 1985; Ussishkin 1982). Tel ‘Eton — a prominent site in the eastern Shephelah — suffered the same fate as its neighbours and the large, fortified city that had flourished on the mound was destroyed (Faust 2011; Katz and Faust 2012). The massive destruction layer sealed houses with their contents, including many pottery vessels, metal artefacts, botanical material (some still within the vessels), as well as loom weights, seal impressions and many additional finds. A large four-room house (Building 101), located on the upper part of the mound was unearthed in an excellent state of preservation, sealed within the heavy conflagration. This elite dwelling was excavated in the course of 10 seasons and was exposed in its entirety. While the final analysis is still in progress and will take a few more
years to complete, the excavations have already supplied a wealth of information concerning this unique house; it is the aim of this paper to present the initial results and to analyze the way the house was planned and constructed (its ‘conception’ and ‘birth’), the way it functioned (its ‘life’), especially on the eve of its destruction and the processes that accompanied its eventual destruction and subsequent collapse (its ‘death’ and ‘decomposition’).\(^1\)

Various anthropological, architectural and archaeological studies have applied the metaphor of a living organism to a building, even if only to some stages in its history (e.g., Bailey 1990; 1996; Harris 1999; Hugh-Jones 1979; Kana 1980; Molloy et al. 2014; Waterson 1990; various papers in Hurcombe and Cunningham 2016). While only a metaphor—a building is not a living thing (Harris 1999)—we find the biographic-like approach worthwhile, for a number of reasons. First of all, we will later see that following the biographic approach enabled us to integrate stages in the building’s history that are otherwise studied separately, that it was useful in illuminating some chapters in the structure’s past, and that it led to a finer understanding of the building’s development. Additionally, while the main aim of this article was to publish the initial findings from Building 101, we find the metaphor useful also for extending the discussion to the family that inhabited the structure, especially in light of the strong symbolic association between the house and the kinship unit in Iron Age Israelite society (Schaub 1996; Schloen 2001: 71; Yeivin 1954: see also Faust and Bunimovitz 2008: 161, and more below).

While the analysis of the finds is still on-going and various classes of data have not yet been studied, the detailed information already available from this structure, along with the comparative data obtainable from many of its contemporaries and the knowledge derived from other studies of houses and households, allow us to follow the biographic approach closely, and to present the entire history of the building and to some extent that of its inhabitants in detail.

Tel ‘Eton: background

Tel ‘Eton, located in the south-eastern Shephelah, Israel, is a relatively large site for Judah (6.6 hectares at its base). The mound is situated at the edge of the trough valley that separates the Hebron hill-country and the lowlands, at an important crossroad; in the valley below it, several routes connecting the coastal plain and Mount Hebron intersected the north–south road running through the trough valley, linking the Beersheba and the Ayalon valleys (Fig. 1).

A brief salvage excavation was conducted on the mound in 1976 by the Lachish expedition, headed by David Ussishkin and directed in the field by Etan Ayalon with the assistance of Rachel Bar-Nathan. Since 2006, the current expedition has been carrying out large-scale excavations at Tel ‘Eton and a survey of its surroundings (Faust 2009; 2011; 2014; Faust and Katz 2012; 2015; Faust et al. 2014). It appears that the site was first occupied in the Early Bronze Age, this was followed by a hiatus during the Intermediate Bronze Age and probably also during the Middle Bronze Age (a few sherds were unearthed in the survey, but none have been found in the excavations so far). Both survey data and excavations indicate that the site was quite large and significant during the Late Bronze Age; although we cannot offer an estimate of the city’s size at this time it must be noted that remains were uncovered down the slopes in both Areas B and C (Fig. 2). Evidence suggests that the Iron Age I settlement was smaller, as no in situ remains were unearthed on the slopes of the mound. Occupation expanded again in the Iron Age IIa: the large Iron II city was destroyed by the Assyrian army in the late 8th century BC (see also Katz and Faust 2012). Settlement on the mound was resumed in the 4th century when a fortified building, surrounded by a village, was established on the top of the tell. This village probably ceased to exist in the 3rd century BC (Faust et al. 2015). The mound was then abandoned, with no significant later settlement.

The main occupational phase unearthed so far in the excavations is the Iron II city that was destroyed by the Assyrian army in the late 8th century BC (Iron Age IIB). Building 101, which was part of this stratum, is the focus of this article.

Building 101

Building 101 is located in Area A, near the southern edge of the mound, in its highest part (Figs 2, 3). The structure was excavated in its entirety over the

\(^1\) The excavations are directed by Avraham Faust. Hayah Katz serves as Associate Director and is responsible for the ceramic analysis. Yair Sapir studies formation processes (as part of his PhD dissertation, under the supervision of Avraham Faust), Assaf Avraham studies Iron Age construction technology (as part of his PhD dissertation, under the supervision of Oren Vitny and Avraham Faust), Tehila Sadiel studies the faunal remains (as part of her Master’s thesis under the supervision of Guy Bar-Oz and Avraham Faust), Anat Hartmann-Shenkam and Chen Auman-Chazan studied the botanical remains (the latter, as part of her Master’s thesis, under the supervision of Ehud Weiss and Avraham Faust), Natasha Timmer and Ofer Marder studied the flint assemblage. Oren Ackermann studied the geomorphology and contributed to the study of the rocks used in the construction. Oren Vitny and Michael Tsersarsky performed laboratory strength tests and analyzed construction technology. The sediments were studied in the Laboratory of Geomorphology and Soil, under the guidance of Sarah Pariente. Ofr Katz studied the micromorphology, Merdechay Benzakou and Dafna Langgut studied the wood remains (paleoarchaeology). Other aspects of the study of the building are not advanced enough to be included here and will be published elsewhere.
course of 10 seasons and although parts of some walls were robbed, its plan is clear and the floors were hardly damaged (Figs 4, 5). Building 101 was built almost parallel to the east–west axis; its dimensions are almost 20 m (east–west) by slightly less than 12 m (north–south), totalling some 225 sq m in the ground floor only.

The entrance to this long house was from the east. From the entrance, in its original plan (Fig. 6a), one entered a large courtyard (101A), from which one could enter a system of rooms to the north, south and west. In its final configuration (Fig. 6b), the courtyard was subdivided: there were four rooms in the north, two in the south and two in the west.

Both the finds in some of the rooms, as well as the width of the walls and their quality (below), suggest that there was an upper storey over at least part of the building — especially the northern sector. As for the courtyard, it appears that it was open and unroofed (see below).

While the walls were, almost without exception (below), made of stones, it appears that there was a mudbrick upper structure at least on top of the inner ones (Fig. 7, see also Fig. 4). The corners and doorways were made of worked stones; even ashlars (Figs 8, 9). In the course of its life the building experienced some changes, the major of which was the division of the courtyard into a number of spaces, probably on the eve of the building’s destruction (Fig. 6b).

The overall plan of Building 101 is that of a large four-room house. The term ‘four-room house’ is generic and is used to designate a typical dwelling found on Iron Age Israelite sites (and rarely outside Israel and Judah) whose ‘ideal’ plan was composed of four main ‘areas’, with three parallel longitudinal spaces that are backed by a broad space. Four spaces, or areas, would be a more appropriate term than four-rooms, since the basic areas are often subdivided into smaller rooms; the actual number of rooms varied greatly. The entrance was usually located at the central longitudinal space. There were, however, subtypes of the ‘ideal’ form, comprising two longitudinal spaces and in exceptional cases even one or four such spaces (Fig. 10). Still, the broad space in
the back should be present in order to qualify the house as part of this group. The four-room house is the dominant type of domestic building in ancient Israel from the early Iron Age until the Babylonian destructions of the 6th century BC. As such, numerous studies have been devoted to its origins, the ethnic identity of...
its inhabitants, the causes for its popularity, its function, as well as to practical questions such as whether the central room (courtyard) was roofed or not (e.g., Borowski 2003; Bunimovitz and Faust 2002; 2003; Faust 2006a; Faust and Bunimovitz 2003; 2014; Holladay 1992; 1997; Netzer 1992; Shiloh 1970; 1973; 1978; Stager 1985; see also Clark 2003; Hardin 2010; Yasur-Landau 2010).

The Nature of Building 101
The building’s size, location, quality of construction and the finds unearthed in it, suggest that it was an elite residence (many of these issues will be discussed at more length later): (1) The building extends over 225 sq m (ground floor only; Figs 6a, 6b), compared with an average of some 40–70 sq m for most urban Iron Age dwellings (Broshi and Gophna 1984; Faust 1999a; 1999b; 2012: 110–12, 159–63; Shiloh 1980; see also Routledge 2009); (2) it is located in the highest part of the mound, in an area that dominates parts of the city as well as agricultural lands and roads below it (Fig. 3); (3) its construction is of high quality, including ashlar stones and more (see also Figs 8, 9); (4) massive preparations were made in order to facilitate the construction of this building (Figs 11, 12, 13); (5) the dozens of storage jars and large quantities of
foodstuffs unearthed attest to a concentration of surplus; (6) the existence of bullae, sealings and a seal, is probably evidence of high ranking officials; (7) the occurrence of Cedrus libani (cedar of Lebanon) within the charcoal assemblage may also be indicative of high socio-economic standing, as is the faunal assemblage; (8) evidence suggests that the building was continuously cleaned, which is also in line with an elite residence; (9) the house is built almost exactly on the east–west axis. Eastern orientation was common in the Iron Age, as part of Israelite cosmology (Faust 2001 and references). Still, not many urban houses could be built almost exactly on this axis, this might also be attributed to its elite nature; (10) in most directions no other buildings abutted Building 101 and even to the north-west, where one building was built adjacent to it, the two did not share common walls; each building had its own outer walls, creating a system of double of walls. Such a practice is common in the Iron II and is usually indicative of high class structures (see also Faust 1999b; 2012, 112; Faust and Bunimovitz 2014: 149–50 and references); (11) the building, which occupied the highest point on the mound, was higher than its immediate surroundings from at least two or even three directions, which made it a very prominent feature, even in relation to the other buildings on the top of the mound; (12) the house existed from the 10th century to the late 8th century BC and, while we lack evidence on the longevity of houses (see Faust and Sapir n.d.), this might also be an indication of high status or quality.

All in all the finds suggest that the inhabitants were of high socio-economic status, especially in light of what we know of Iron Age housing in other cities in Israel and Judah (Faust 2012). Building 101 was not only part of a small group of elite Iron Age houses (Faust 2012: 112; Faust and Bunimovitz 2014: 149–50), but belongs to the upper echelon of this group. Just for
comparison, out of 102 dwellings studied in detail by Faust (2012, for a summary, see pp. 207–12), 77% were smaller than 100 sq m, only 1% was larger than 200 sq m (see also Panitz-Cohen 2011: 88; Singer-Avitz 2011). We will address the nature of the inhabitants of this particular building in more detail below.

The Excavation of Building 101

The structure, excavated in the course of 10 seasons, was not usually covered by later architectural remains; only in some places was it covered by the foundations (usually one course only) of a late Persian–early Hellenistic fortified building. Once below topsoil, everything was sieved, using 0.5 × 0.5 cm metal mesh. All the finds were recorded with their exact location and their distribution plotted using ArcGIS. Large segments of the floors were excavated using a grid of 20 × 20 cm; every vessel that was identified in situ was excavated separately as a unit of its own, usually over the course of at least a few days. Every sherd, including body sherds, uncovered in practically every locus which was not defined as topsoil in this area (i.e., within the wall-collapse, as well as on the floors), was registered and this allowed us (through 3D reconstructions), once the vessels were restored, to reconstruct the breaking patterns and to identify pre- as well as post-depositional processes (e.g., Sapir et al. n.d.). All in all, some 484 artefacts, as well as some 188 complete pottery vessels, were found within the confines of the building.2

2The term ‘complete vessel’ applies to any vessel the majority of which was unearthed. Since various post-depositional processes lead to movement of sherds, one cannot always expect to find all the pieces of a vessel, and if the majority of the vessel is found, it suggests that the vessel was located in the building when it was destroyed, and hence needs to be explained as part of the use of the building prior to the destruction. In this article we discuss mainly the distribution of complete vessels as counted following restoration, or (in cases where the pottery is not yet fully restored) on the basis of the counting of in situ vessels during excavations. Since the restoration is still in progress, it is likely that the figures will be slightly updated in the future, but the overall patterns presented here are not likely to change.

Figure 5 A composite aerial photograph of Area A (photographed by Sky View and Griffin Aerial Imaging, edited by Yair Sapir) (courtesy of the Tel 'Eton Expedition).
The 'conception' and 'birth' of Building 101: preparations and construction

Radiocarbon dates show that Building 101 was built in the 10th century BC (Faust and Sapir n.d.), following meticulous preparations. The construction was not an ad hoc operation; it was conceived in advance. The first step was the levelling of the previous remains (from the Iron I) and, as we shall see, various materials were placed throughout the area in order to facilitate the construction.

Only in two places did we cut large sections in the floors of the house and in both places, instead of reaching earlier levels (which was our intention in creating these sections), we unearthed evidence for heavy investment in the foundations of the building and for the careful planning that preceded actual construction.

In room 101D we unearthed a thick layer composed mainly of small fragments of limestone, mixed with ash (the material was quite loose), reaching a depth of about 1 m (Fig. 11). This might have been done in order to allow drainage and could have been connected with the function of the room during the first phase of its existence (though clearly not during its last phase, below). The walls of this room, by contrast, were based on a layer of hard soil, mixed with chalky material (Fig. 12).

Another section (1.5 × 1.5 m) was opened in the courtyard, in a second attempt to find the preceding phase and date the construction of the building. We assumed that in the courtyard there was less need for make-up or foundations and hence we would more easily find the earlier occupation. This assumption was proved wrong. Immediately below the earth floor we uncovered flat and long chalk blocks that were laid there on an east–west axis, mixed with compact earth that included many chalky sediments (Fig. 13). We excavated the compact chalky earth and within it, near Wall F1231, we uncovered a foundation deposit (Fig. 14, to be discussed below).

That much pre-planning was involved is evidenced not only by the scope of the preparations, but also from their meticulous placement. The mere fact that
the make-up of the floor of room 101D was of a thick layer of small fragments of limestone mixed with ash, while below the walls of the very same room compact earth was laid, suggests the placement of the various materials was carefully planned, before the walls themselves were built. We do not yet know about the situation in other rooms, but the evidence from the courtyard also suggests that the entire operation was well-conceived. Metaphorically, the levelling of the earlier remains, which can probably be equated with the modern ‘ground-breaking’ (cf. Harris 1999: 19–21), can loosely be interpreted as the conception of the house.

The foundation deposit: initiating construction

Foundation deposits are a well-known phenomenon in the Late Bronze and early Iron Ages (e.g., Bunimovitz and Lederman 2016: 215–23; Bunimovitz and Zimhoni 1993 and references), but it was recently demonstrated that they continue into the beginning of the Iron II (Bunimovitz and Lederman 2016: 219, 221), as is the case here. The deposits typically include ceramic vessels, such as bowls and lamps or chalices (as is the case at Tel ‘Eton). The vessels were typically new and show no signs of use; they were commonly placed below or near wall foundations. It had been suggested that foundation deposits were probably placed as part of ritual associated with the construction of a new building, perhaps as the final stage of a foundation ritual (e.g., Macalister 1903: 306–07). The geographical distribution of the various deposits during the Late Bronze Age (when the custom was initiated in the southern Levant) matches the areas of Egyptian hegemony and influence. Many scholars therefore believe that the Canaanite population adopted the custom from Egypt, where ‘The placing of offerings … was part of the foundation rite’ (Bunimovitz and Lederman 2016: 222). While in the Late Bronze Age the ceremony was more formalistic, the finding of ‘scale models of the tools and materials
used in building, decorating and dedicating the structure’ suggests that earlier ‘the offering symbolized the actual process of construction’ (Bunimovitz and Lederman 2016: 222. For discussion, see Bunimovitz and Lederman 2016: 222–23). While the preparation for the construction (levelling earlier remains and placing materials below planned floors and walls) started before the foundation deposit was placed near wall F1231, it is likely that the ritual in which the foundation deposit was laid (and there could be additional such deposits, yet uncovered) marked an important stage in the construction (cf. Hendry 1981: 216–21; Meyuhas 1937: 8), most likely the beginning of the actual building work (cf. the modern laying

Figure 7 Wall F1020 — the southern wall of Room 101D (looking south): the wall is built of mudbricks on top of stone. Note the white chalky material at the bottom of the photograph, which sealed some of the remains and was probably part of the ceiling (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).

Figure 8 Ashlar stones (wall F1116) at the main entrance to the building (looking north-north-east) (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).
of the cornerstone, Harris 1999: 19–35 and references). If so, we believe we may, metaphorically, refer to this ceremony as marking the (beginning of the) birth of the house.

Construction

The walls were made of high quality materials; the doorways, wall edges and corners were constructed with ashlar stones (Figs 8, 9). Most of the walls were built using stones (the outer walls) or of mudbrick built over stone lower courses (inner walls) and were preserved to a height of about 1.5 m (Fig. 7). The mudbrick dimensions were 56–59 × 33–37 × 12–14 cm (length x width x height). One inner wall (F1048), separating Rooms 101D and 101E, was built only of mudbricks and was also preserved to about 1.5 m (Fig. 15). However, the dimensions of the mudbricks in this wall — 53–54 × 34 × 19 cm — were slightly different (see more below). The mudbricks used during the initial construction were fired at a temperature of more than 400°C (mostly in the range of 500–600°C; Sapir et al. in press). The foundations were continuous (a kind of ‘rubble trench foundations’, which are still used) and were found running below the doorways (Fig. 16), hence connecting the entire building and perhaps strengthening the structure. Notably, we have studied the uniaxial strength and elastic constants of several bricks collected in situ using a closed-loop, servo-controlled test apparatus; strength tests were performed on the walls and foundations, using a Schmidt hammer and a penetrometer. Initial results suggest that the average uniaxial compressive strength of the mudbrick material (i.e., the stress it can withstand without failure), tested on cylindrical cores (50 mm diameter), was found to be 3.05 MPa (megapascal) (for the methods, see Goodman 1989). Given an average density of 1.35 gr/cm³, this strength suggests that the mudbricks used in wall construction provided considerable load capacity, sufficient to support two (or more) storeys.

The floors were made of earth (sometimes mixed with small stones, e.g., Room 101D), crushed limestone (e.g., the courtyard, Room 101J) and one of the rooms was paved with small stones (Room 101G). As for the roof, an examination of 300 charred wood fragments unearthed within the building reveals that almost 90% of them were of olive (Olea europaea), suggesting that (at least during the last phase) the roofing was based on olive tree beams (we assume that not all the wood fragments originated from the roofing, but many did), on which additional materials were laid, mainly fired clay and chalk (for ethnographic observations in the region, see Avitsur 1976: 39; Hall et al. 1973: 249, 259; Watson 1979: 119, 159, 161, 241, 283; and see below).

In the context of this article we will not elaborate on cognitive aspects related to the use of the four-room house as a mental template (Faust and Bunimovitz 2014 and many references), but below we will present analytical evidence suggesting that Building 101, and by extension many others, were pre-planned in a way

Footnote:

3There were some minor exceptions. The length of two mudbricks reached 61 cm and one was even 63 cm long. As for the height, one mudbrick was 15 cm high (see Sapir et al. in press for full information).
that enabled their development over time in a manner that matched the life-cycle of the family, without making structural changes to the building.

The ‘life’ of the house, part 1: its development

Already during fieldwork it was apparent that the structure was modified over time (cf. Figs 6a, 6b). Thus, it was evident that walls F1031, F1032 and F1041, for example, are later than the original construction. Wall F1173 was also clearly a rebuilding on top of an earlier wall (F1171), while wall F1141 is a blocking of a doorway, thus changing the function of the small room it blocked (Room 101F). Platform F1489 was also built at some point in the southwestern corner of Room 101B. Wall F1048 was initially interpreted as belonging to the first phase and its construction, using mudbricks only, was attributed to its being an inner wall, which did not face the elements from the outside, nor the courtyard. This, we assumed, meant that there was no need for stone courses (see Figs 4, 6a, 6b).

The detailed study of the composition, size, colour, carbonate content and firing temperature of the mudbricks that were used in the construction of the building, however, enabled us to slightly modify this understanding and helped us decipher the building’s development (Sapir et al. in press). It appears that wall F1048 was not part of the original construction phase; its mudbricks differed from the mudbricks of this phase in size, colour, carbonate content and grain size distribution (texture). This wall was added after the erection of the structure in the plan reconstructed in Fig. 6a, thus dividing the large room in the western part of the northern sector and creating two smaller ones (101D and 101E). Later, wall F1173 was rebuilt (on top of wall F1171) and, finally (probably on the eve of the destruction), walls F1031, F1032, F1041 and F1315 were built in the courtyard. These walls were built of a much lower quality than their predecessors; the mudbricks were not fired (or were fired in a temperature less than 400°C), with the exception of a few older mudbricks that were reused and incorporated within those walls, mainly in the corners or edges, probably to strengthen them. The lower quality is manifested also by our inability to identify the contour of the mudbricks, as well as their different grain size distribution (texture), carbonate content and colour (for details, see Sapir et al. in press). These differences might have resulted from changes in the materials used by the builders, from the expertise of the workers, from the fact that those were only low separation walls that were not supposed to support a ceiling, but perhaps also from the circumstances surrounding their construction, on the eve of the Assyrian conquest and under time constraints. It is possible that the walls were built when the Assyrians were already present in the area and the builders were prevented from quarrying their preferred mud and had to improvise.

Figure 10 Four-room houses: schematic chart (redrawn after Shiloh 1973: 279).
The modular nature of the inner division of Building 101

That wall F1048 is a later addition has interesting implications for our understanding of the mental processes involved in the planning and use of the building (above). It appears that in its original phase the building contained large rooms, e.g., room 101I in the southern sector and room 101D–E in the northern sector (Fig. 6a). Each of these large rooms had two doorways leading into them. Later, the room in the northern sector was subdivided into two rooms (101D and 101E) by the addition of wall F1048 (Figs 6b, 15). This suggests that the building was built in a way that allowed changes, without altering, let alone damaging, the overall contour.

Differences in the inner division of four-room houses, despite great similarity in the overall plan, were identified in many cases in the past, for example the western house at complex 100 at Kh.
Jemein (Dar 1986: 20), the western tower at Tell Beit Mirsim (Albright 1941–1943: pl. 6), Building 176 at Tell el Far‘ah (N) (Chambon 1984: fig. 3) and many others (see also Faust 2012: 161–62) and were attributed to the fact that when the houses were destroyed, each was used by an extended family at a different stage of its life-cycle (Faust 2012: 161–62). The composition of extended families changes significantly during their life-cycle and, as they go through various stages, their needs change (e.g., Rapoport 1969: 36; Seymour-Smith 1994: 76; Wilk and Rathje 1982: 626; see also Hardin 2010: 179–80; Moore 1986). Regardless of the question whether each nuclear unit received a space of its own or not, the mere changes...
in the number of inhabitants made different demands on the available space within the house. Thus, sometimes more bounded spaces are required to differentiate sub-units (e.g., nuclear families) and activities, for example if each married woman was expected to have a loom (cf. Cassuto 2004; Meyers 2013: 133, 141; and see below), it is possible that — for whatever reason — not all looms could be placed together in the same space in which food was prepared (which as we shall see below is often the case). In other stages less division is desired and perhaps spaces could be enlarged.

The evidence from Tel ‘Eton suggests that these changes were a factor that was taken into consideration when structures were built, with the construction being done in a way that allowed much future flexibility and change, without harming the overall stability of the house (Sapir et al. in press). Thus, large spaces were created on purpose with two doorways, allowing their future sub-division and preventing the need to break or dismantle walls and endanger the structural integrity of the entire building. Viewed in this light, we can better understand not only the above-mentioned rooms with two doorways (at Tel ‘Eton and other sites), but even the special suitability of pillars, so common in Iron Age architecture (e.g., Netzer 1992; Shiloh 1970; 1973), to this concept of planning.

Given the longevity of Building 101 (at least 250 years), it is quite clear that the use of space and the
internal subdivision changed in the course of its existence. In light of the modularity of the building and the fact that the floors were cleaned continuously and no floor raisings were identified (below), it is even likely that some partition walls were erected and later dismantled without leaving clear traces other than some minor floor modifications (we intend to re-examine floor modifications and see if we can find some evidence for this).

The ‘life’ of the house, part 2: the use of space in the house on the eve of its destruction

Most of the information on the ‘life’ of Building 101 pertains to its final days, as hundreds of vessels and artefacts were unearthed within the destruction level. It must be stressed that the finding of some artefacts and vessels at a certain location is not necessarily indicative of the use of space, since various pre- as well as post-depositional processes influence the find spots of artefacts. Thus, processes of abandonment can influence the nature of the finds in various spaces (e.g., Molloy et al. 2014; Nelson and Schachner 2002; Schiffer 1987; Stevenson 1982; Ziadeh-Seely 1999), as the nature of these spaces changes and they are turned into a dump or a playground for children, etc. We should, therefore, beware of the ‘Pompeii premise’, i.e., the premise that life ended at once, that the findings reflect a sudden frozen moment in time which is representative of longer-term pattern of use, even that the finds were unearthed in their original place of usage and can be used to reconstruct the use of the various spaces (e.g., Binford 1981; Ciolek-Torrello 1989; Schiffer 1985; 1987; see also Faust and Erlich 2011: 211–14; Shahack-Gross 2011); what Cameron (1993: 3) labelled the ‘disaster movie mind-set’. Two points, however, should be made in the present context: (1) as we will see below, Tel ‘Eton was violently destroyed during a military campaign — we are not witnessing a gradual process of abandonment; (2) while there were, inevitably, some changes in the use of some spaces in preparation for the arrival of the Assyrian army, this should not in any way be viewed as a problem. We realize that there were changes in the use of the various rooms over the years, as clearly referred to above, and it is our aim in this sub-section to study the way the building was used on the eve of the destruction. The different uses to which these spaces were put earlier is not our concern in this section.4

Thus, the finds within the building allow us to reconstruct the way the various spaces were used when the house was destroyed. A full discussion will require a book-long treatment, so we offer here some comments on the use of the spaces in the ground floor, based on the finds (the analysis of the upper floor will be mentioned only briefly when relevant).5

The 188 complete pottery vessels that have been unearthed so far, along with some additional classes of artefacts already studied (out of the hundreds of additional artefacts uncovered), will serve as the basis of this discussion.

Courtyard

When the building was destroyed, the courtyard was divided into three sub-units. All in all, the ceramic vessels in the courtyard are quite scattered, and some of them probably fell from the upper floor room that partially surrounded it. In the section below, we will address the major findings, including all the in situ vessels unearthed.

Space 101A1: Very few in situ vessels were found in this space. In its western part we found the bottom of a storage jar, sunk into the floor.

Space 101A2: Very few vessels were found in this space, but some 66 loom weights were found in one batch in the eastern part of the space, to the south of wall F1162 (Fig. 17). An additional 21 loom weights were found nearby, either in the same space or in the north-western part of space 101A3. It is quite clear that a large loom (or, more likely, two looms) was placed there (cf. Miszk 2012: 120–23 and references).

Space 101A3: The only major concentration of vessels within the entire courtyard was found in this space, not far from the entrance to the building. Here, some nine vessels (including bowls, juglets, storage jars, a stand, and more) were unearthed on the floor near and around a plastered installation (F1392; Fig. 18).6 In addition, a storage jar, a juglet and a bowl were found in the north-western part of this space, where many loom weights were found in the periphery of the larger concentration found in room 101A2 (above and see also Fig. 17).

Northern sector

The rooms in the northern sector were mostly used for storage. The finds in room 101D, below a layer of chalky material (which we understand as the remains

4As noted, post-depositional processes can greatly change the nature of the remains (Schiffer 1987 and many references), but since we are discussing complete vessels in what appears to be mainly undisturbed contexts, we think that we can, carefully, treat the assemblage as representative and cautiously learn about the use of space at the time of the structure’s destruction.

5The study of the upper floor is still on going, but it is unlikely that the conclusions will significantly differ from the preliminary conclusions presented here.

6The restoration of the vessels is now in progress and it is likely that there will be some minor changes in the counting once it is concluded.
Figure 17 Building 101: distribution of loom weights (prepared by Tamar Olenick; courtesy of the Tel 'Eton Expedition).

Figure 18 Installation F1392 (the courtyard, looking west) (photo by Avraham Faust; courtesy of the Tel 'Eton Expedition).
of the ceiling, see below), included many smashed storage jars, unearthed in situ (Fig. 19). Between the jars were additional finds, including a few juglets, animal horns (the bones) and more. Many of the jars were uncovered with the remains of their contents — mainly olive pits, grape stones or lentils (and even bitter vetch (Vicia ervilia)) — still inside. In addition, two concentrations of garlic were unearthed; it appears that these were hung on the walls and fell down when the house was burnt. Wheat was found on the floor and was probably stored in sacks. In sum, the finds that are clearly associated with the ground floor apparently included eight storage vessels, three bowls, three jugs, four juglets, one lamp (unearthed on the floor of the doorway connecting the room and the courtyard) and additional finds.

Figure 19 In situ finds in Room 101D, looking south-east. Note the white chalky material protruding from the baulk and covering some of the remains (compare with Fig. 7, photographed during a later season) (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).

Figure 20 In situ finds in Room 101E (looking south-south-west). Walls F1048 and F1162 are visible in the background (to the right and left accordingly) (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).
More vessels were unearthed in the debris of the upper storey. Especially worthy of mention are four bullae/sealings that were unearthed just above the chalky layer and were probably stored in the upper storey. This upper storey room was possibly used for administrative purposes.

Room 101E was also used mainly for storage (some nine storage vessels were unearthed there, along with smaller vessels; Fig. 20). Room 101F was small and the finds were more limited, including only one large storage jar and additional smaller vessels. The finds in the last room in this sector, room 101G, included mainly storage jars (seven have been partly or completely restored at present), a krater and a funnel (along with one cooking pot and one juglet), hence indicating that the room was used almost solely for storage. Below the vessels and above the floor, a large concentration of grain (wheat) was uncovered (Fig. 21). Interestingly, most of the storage jars were found either on their side or with their openings facing downwards, as if they had fallen onto the burnt layer. It is likely that grain was stored in sacks on the floor and that the jars were kept on top of them. In the course of the conflagration (see also Fig. 29, below), the storage jars collapsed on the burnt wheat (it is also possible that the storage jars were placed on shelves, but this is less likely). The funnel, which is a unique find, was probably used to help control the spilling of grain during pouring (more below).

The finds clearly indicate that the northern sector was used mainly for storage.

Southern sector

The southern sector had far fewer ceramic finds and it appears that it served different purposes.

Room 101I, in the western part of this sector, was apparently used for living, as the finds were far less dense and included six cooking pots, along with other small vessels (and only three storage jars and one hole-mouth jar were unearthed there). The finds also included a small square installation that might have been used to store something; attached to it were the remains of what might have been an oven or a similar installation (see, recently, Ebeling and Rogel 2015; surprisingly, preservation was very poor and the nature of the remains is not clear). These, along with the fact that this is the highest concentration of cooking pots in the building, suggests the room might have been used for food preparation (but see Daviau 1993: 200–06). One should also note the big concentration of 41 loom weights that was unearthed in the south-eastern part of the room, not far from the installation and possible oven remains (see also Fig. 17), which indicate that weaving also took place here. Both food preparation and weaving were feminine activities in the ancient Near East in general and in Iron Age Israelite society in particular (Cassutto 2004; Meyers 2013: 128–33; see also Faust 2002 and many references) and many studies show that both often took place in the same space simultaneously, allowing for better use of space and time (Aizner 2011; Meyers 2013: 133). Thus, this room was clearly ‘feminine’ in nature, serving female activities, such as food preparation, weaving and perhaps even children’s care.

Room 101J was a large room that was found devoid of complete vessels. It is therefore interesting to note that such (‘empty’) rooms were found in many Iron Age houses throughout the country (e.g., locus 82a in house 2a at Hazor, which is located in exactly the same relative location as the room within Building 101 under discussion here and Locus 117 in the western building of complex 100 at Jemein; Geva 1989: 46–48; Dar 1986: respectively, see also Aizner 2011: 145–47; Faust and Katz 2017). This seems to supplement the conclusions of access analysis of four-room houses, conducted by Faust and Bunimovitz (Faust 2012: 223–24; Faust and Bunimovitz 2014: 152–53; following, for example, the work of Hillier and Hanson 1984). Faust and Bunimovitz noted that these complex houses usually follow a very shallow tree form, in which all spaces can be accessed from the main room/courtyard, and there was no need to cross one room in order to enter another (or in other words, there was no hierarchy of spaces and little restriction on movements; Faust and Bunimovitz 2003; 2014; for a different type of Iron Age dwelling, see Gilboa et al. 2014). They have raised the possibility that four-room houses suited the special needs of Israelite families in general and carefully suggested that perhaps this plan enabled the development of Israelite purity habits, as reflected in the Bible. While purity laws, especially restrictions on menstruating women, are practically universal (e.g., Buckser 1996; Frandsen 2007; Small 1999; Strassmann 1992; see also van der Toorn 1994), biblical purity laws, especially these of the Priestly source, are relatively unique in allowing unclean people to stay in the house, whereas most other practices (including in Mesopotamia) required them to leave the dwelling (e.g., Milgram 1991: 952–53; cf.
The four-room plan seems to explain the development of these biblical practices, which were formulated on the background of some concrete reality, most likely the one shaped by the ubiquitous four-room house (regardless of the question of how many people actually followed the laws, or even knew about them). Interestingly, in the Priestly perception presented in the Bible, ceramics become impure by contact with impure individuals (e.g., Lev 6:21; 11:33; 15:12; Num 31:20–24; see also Ben-Shamai 1958: 392; Faust 2006b; Licht 1995: 115) and, following this logic, it would, therefore, be counterproductive to give them to unclean people. It is likely that other materials like wood (which was cheaper) and metal (which was far more expensive) were used there (as they could be easily purified). Room 101J was, if to develop this interpretation, used to house unclean individuals, mainly women during menstruation (see extensive discussion in Faust and Katz 2017). This is further supported by the discovery of an 80×90 cm white surface that was made of crushed limestone at the entrance to the room (Fig. 22). This squared surface was located between the door posts, as well as in front of them to the north (i.e., inside the courtyard). At the edge of this ‘limestoned’ surface, a basin made of soft limestone (kirton, i.e., the local chalk) was uncovered (upside down). It appears that the empty room, the squared surface at the entrance, along with the stone basin, are complementing each other and while the room most likely served to house unclean people, the white surface and the basin served in the washing ritual (Faust and Katz 2017). During the Iron Age the ritual cleaning did not involve bathing in water, which is a later development, but rather the pouring of water on the impure (e.g., Katz 2012 and many references). The location of the room, near the entrance to the building, and especially the fact that it is a

8Notably, although most scholars still tend to date the Priestly texts to the Persian period (e.g., Blenkinsopp 1996; Clines 1993; Levine 1993: 101–09; Roté 1994; Sperling 1999), and some date them to the Exilic period (see Clines 1993: 580), a growing number of scholars tend to view them as earlier, and date them (or, at least, significant parts of them) to the Iron Age (Friedman 1987; Halpern 1991; Hurvitz 1974; Knoff 1995; Milgrom 1991: 12–13; 1999; Schwartz 2011: 208–09; Weinfield 1979; Wenham 1979: 13; see also Arnold 2009: 29–30; Vanderhooft 2009). Though apparently still a minority, it appears that the number of these scholars is growing and, more importantly, it appears to include many of those who specialize in the study of the Priestly source (e.g., Knoff, Milgrom, Schwartz and Wenham, see above). That the law seems to assume the unique possibilities afforded by the four-room house fits the earlier dating.

9Since those who stayed in the room were free to leave and enter the house (and this particular room), but had to be careful in their contact with others, this location enabled them to have much easier movement to and from the main doorway (with less chances of accidentally touching someone or something; see extended discussion in Faust and Katz 2017).
broad room with the doorway located far from its centre, means that most of the room could not have been viewed from the courtyard and that large parts of it could only have been viewed once one entered the room (cf. Bafna 2003; Hanson 1998; see Faust and Katz 2017: fig. 17). While many of the rooms of a typical four-room house share this quality, this is far more noticeable in the case of room 101J. Thus, the location of the room itself, along with its size and the location of the doorway are all in line with the above suggestion, as they allow both privacy and easy access that limits the interaction between clean and unclean individuals (Faust and Katz 2017).

Since most of the unclean people (room 101J) were menstruating women and since food preparation and weaving — as well as caring of children (room 101I) — were also feminine activities, it appears that the entire southern sector should be viewed as feminine.

A stable?

In theory, the lack of vessels could indicate that the room was used as a stable for animals. This, however, runs against a large set of evidence. First of all, this room was ‘screened’ from the rest of the building by an installation (F1392, see Fig. 18) and a row of vessels that stood in the courtyard and prevented easy access to the room. It had been suggested (Faust and Katz 2017: 16–17) that this was done in an attempt to direct the movement of people away from this room. While people could, carefully, pass and move towards the room, animals could not go through these vessels and would, most likely, have broken them; furthermore, the unique surface at the entrance to the room (above, see also Fig. 22) would have been damaged by the frequent trampling of animals. Additionally, the room lacked any sort of drainage that might support its use as a stable. Finally, no installations that could feed the animals were found inside the room — not even a basin. The question of whether animals were kept in the building is further discussed below.

Western sector

The western sector was composed of two rooms.

Room 101C, in the northern part of the sector, was used for storage; some 38 storage vessels were found

10The low frequency of phytoliths in this room (2.9 and 11.7 thousands per gram) runs contrary to their frequency in other rooms (in other sites) that have been proved to have served as stables (e.g., Shahack-Gross et al. 2008) and suggest that the room was not used for this purpose. The number of the spherulites, however, is higher (1.3 million and 5.5 million per gram); the issue will be discussed below.

Figure 22 Room 101J: the crushed limestone surface at the entrance to the room (photographed from the courtyard, looking south) (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).
there (Fig. 23), along with an oil lamp and an intact funnel (more below). Various lines of evidence, including the complete absence of botanical remains and the nature of finds that were unearthed within a few of the vessels, along with the fact that this is the only room that did not face direct sun-light (more below), suggest that this room was used to store liquids.

Room 101B, in the southern part of the sector, had far fewer finds; only eight vessels (of all types) were identified during the excavations. An oil lamp was discovered on the floor of the doorway connecting the room and the courtyard.

It appears, therefore, that the western sector is also divided between north and south; the finds in the southern room are similar to those unearthed in the southern sector (living), while the finds uncovered in the northern room are similar to those found in the northern sector (storage).

Additional patterns

The data at our disposal reveal very clear patterns of behaviour and a few examples will suffice:

Animal Bones

Despite 100% sieving, relatively few bones have, so far, been unearthed in Area A. Since the pattern repeats itself in almost all rooms and spaces and throughout all seasons, this is clearly a real characteristic feature and not a result of excavation procedure. This is further supported by the fact that most of the bones found were extremely small (as a result of the sieving). We tend to explain the rarity of finds (not complete absence, see below) by the fact that this elite house was constantly kept clean and that the refuse was dumped elsewhere. This suggestion is further supported by the lack of evidence for floor raisings and by the low frequency of phytoliths in all the rooms (usually a few thousands per gram and a maximum value of about 22,000 per gram, which is very low compared with other sites; cf. Shahack-Gross et al. 2005).

An interesting feature of the faunal remains that were unearthed in Area A is that while limited in quantity, no less than 13% were identified as coming from wild animals, such as mountain gazelle, Persian fallow deer, fish and birds. Just for comparison, the percentage of the wild species in Iron II context in Areas B and D (where domestic contexts were exposed) is typically 4–5%. We attribute this to the fact that wild animals were probably more prestigious (see also Greenfield 2014: 13, especially table 3) and hence formed a larger part of the diet in this Area, compared with other domestic contexts.

Artificial Lighting

Three of the four complete, in situ oil lamps that were found in the building were unearthed in/near doorways (Fig. 24), suggesting that they were left there for people to take and light when leaving the open courtyard and entering the dark rooms. Thus, after entering a room, one could take the lamp, light it and use it while in the room, then (when leaving the room) turn it off and leave it at the entrance for others to use. This location is similar to that of a light-switch in modern houses, for the same reason. This also

11To exemplify the relative scarcity of bones in this area, we should note that the volume of the 8th century remains in Area A (inside Building 101 and outside it) greatly exceeds that of the remains excavated in all other parts of the mound combined (due to our focus on this building and its excellent preservation below the late Persian period building; in other Areas the 8th century remains were not preserved so well). Still, the total number of identifiable bones from this Area is (at the time of writing) only 135. Although excavated to a more limited extent, the number of identifiable bones from the same era unearthed in other excavation areas is about 300.

12Two were uncovered in the passageways connecting Rooms 101B and 101D with the courtyard, the third was uncovered in a storage vessel (originally it was probably left on top of it) near the entrance to Room 101C. It is interesting to note that all the in situ lamps were uncovered in the western, inner part of the building.
supports the understanding that the courtyard was unroofed (otherwise the lamps would have been needed in the ‘courtyard’ too and would not have been left at the entrance to the side-rooms). At least in room 101D there was an additional oil lamp inside the room, but it was unearthed within the wall fall and most likely had originated within the upper storey. This also suggests that there was a permanent source of fire in the building, from which the fire was taken in order to light the lamps.13

A note on the usage of storage rooms

Another interesting pattern was identified in room 101D. Here, just near the entrance, we found (in situ) a broken storage jar; on its base (on the inside) three bowls were found one within the other (Fig. 25). This suggests that the bowls were left on top of the first storage jar one encountered at the entrance, so the entering person could take a bowl (after taking a lamp from the doorway), fill it with whatever was needed and then take it to another space where the content was used or consumed. Additional bowls were probably used to cover some of the jars.

The use of funnels

Two funnels were unearthed in the building, each in a large room that was used for storage (rooms 101C and 101G). The funnels’ height (18 cm) and the width of their lower apertures (7.2 and 7.6 cm, respectively) are almost identical, but the size and shape of their openings vary greatly (19.6 and 25.6 cm, respectively; Fig. 26). The large funnel found in room 101G was unearthed along with charred grain; the wide spout or mouth is suitable for absorbing grain spilled out of sacks and channelling them to the storage vessels. The smaller-opening funnel, unearthed in room 101C along with many storage vessels that were probably used to store liquids (above), is clearly suitable for directing liquids into containers. It is narrow and the mouth is incurving toward the lip to prevent spilling. Thus, the wide exposure of Building 101 can be used to gain a better understanding into the form of some vessels and allows us to understand some functional aspects that might otherwise be simply attributed to ‘stylistic’ preferences.14

Approach to the upper floor

No stairs were unearthed and, since the building was excavated in its entirety, this means that people probably climbed to the upper floor using wooden ladders.15

Were animals stored in the house?

Ethnographic evidence from traditional villages in the Near East and the Mediterranean suggests that animals were typically kept in dwellings (e.g., Avitsur 1976: 37–40; 224; Bourdieu 1977; Canaan 1933: 35; Hardin 2010: 169; Meyuhas 1937: 2; Watson 1979) and this is also the common archaeological reconstruction of the use of space in Iron Age houses (e.g., Borowski 2003: 19; Holladay 1992; 1997; King and Stager 2001: 29, 34; Singer-Avitz 2011: 287). Still, the evidence from Building 101 suggests that no animals were kept within the structure. In most of the rooms the macro-remains supply clear evidence as to their function, at least during the final stage of the house (above) and this does not allow for stabilizing. And, we have seen, even in Room 101J in which no pottery vessels were unearthed the data precludes its use for this purpose.16 Thus, although evidence suggests that animals were sometimes stored in elite or public buildings (Shahack-Gross 2011; Shahack-Gross et al. 2005), it is plausible that this was not a rule and that in elite buildings the animals were often kept in an adjacent structure and not within the main dwelling. It is likely that this is the case here.

Was the central space roofed or not?

The question of whether the central room in four-room houses was roofed or not has received a great deal of scholarly attention. In the past, most scholars

13It should be stressed that in most Iron Age houses oil lamps are quite rare, and in a few cases lamps were not found (Azner 2011: 141–42 and many references; see also Panitz-Cohen 2011: 88; for the situation in Greece, see also Moulou 2015). Their high frequency at Building 101 stands out. It is therefore likely that their presence might be another indication as to the high status of the inhabitants who could afford the expense of using so much light (i.e., oil and perhaps wood for a permanent fire).

14We are not suggesting that style is disconnected from function (e.g., Hodder and Hutson 2003), but the limited data would not have been sufficient to understand the differences, and it is only the wide exposure of Building 101 that enabled us to gain these insights.

15It is possible that there was also access to one of the rooms (for guests) from the outside (e.g., Meyuhas 1937: 7; cf. II Kgs 4:10), but we have no evidence for this practice in Building 101 yet.

16The above-mentioned low frequency of phytoliths in all the rooms might also suggest that none of the rooms was used to house animals on a regular basis (cf. Shahack-Gross et al. 2005). The number of spherulites in many of the floor samples reaches greater quantities (up to 7.8 million per gram in one of the samples in Room 101G), but although this can be taken to indicate the presence of animals, such a conclusion should be considered more critically. First, the presence of spherulites in Room 101G (2.8 and 7.8 million per gram in two samples), for example, does not fit the macro-remains unearthed in this room on the eve of the destruction, which shows conclusively that at this time it was used for the storage of grain (above). This disparity, alongside the low phytolith concentrations that are atypical of dung remains, implies that it is unlikely that the room was used to house animals. It is more likely that the observed spherulites originate in earlier activities in these spaces and that they were embedded in the floors when the rooms served other functions (perhaps they also relate to the material of which the floors were made), but they clearly cannot be taken as an indication for the activities that took place in the various rooms in the final stage of the building (and this applies also to room 101J, discussed above). The small size of spherulites (rarely over 5 microns in diameter) and the fact that their calcic surfaces are more likely to ‘stick’ to floor surfaces might explain how they survived the constant cleaning (while the phytoliths were swept up).
Figure 24 Building 101: distribution of *in situ* oil lamps (marked as triangles; prepared by Tamar Olenick) (courtesy of the Tel ‘Eton Expedition).

Figure 25 Room 101D: bottom of storage jars and bowls, during the excavations (looking east) (photo by Avraham Faust; courtesy of the Tel ‘Eton Expedition).
tended to view it as an open space, but since the 1980s there has been a tendency to view it as a closed and roofed space (for discussion, see for example, Hardin 2010; Holladay 1997; King and Stager 2001; Netzer 1992; Singer-Avitz 2011: 287–88; Stager 1985). The results of the current project, however, seem to indicate that at least in some cases, including the present one, this space was unroofed. This is indicated by the following: (1) the nature of finds within the courtyard when compared with the other rooms; (2) the many arrowheads unearthed in this space (below); (3) the evidence regarding the use of space (i.e., the finds in the various spaces and even the above-mentioned evidence of oil lamp distribution); (4) the fact that the collapse of stones and mudbricks was far less massive than in the other rooms and that no signs for upper floor accumulations were unearthed; (5) its size, which made building a roof over it very difficult (its width was some 4.5 m); (6) the lack of evidence of roofing (below), while such evidence was unearthed in the other spaces.

Evidence suggests that the rest of the building was roofed and that an upper floor was built above at least part of it. This is indicated by the nature and location of the finds, the wealth of the remains and especially by the discovery of large patches of hard chalky material in the middle of the wall-fall in a number of places (Fig. 19). The findings above this chalky layer include many vessels, but the sherds were usually widely dispersed and the broken vessels were not usually found in articulation. Most of the finds below the chalky material were unearthed in situ. We currently assume that the chalky material, which (as FTIR analysis showed) is actually a mixture of unfired chalk and fired clay, is part of the upper storey floor (the issue is still under study).

Who lived in the house? Family structure

It is clear that despite the impressive architecture, the house served a residential function, probably as the abode of a family; it was not a public building. The house had sectors for storage, sleeping and food preparation, while the courtyard served various purposes. Given the size of the building (225 sq m gross; 121–130 sq m net (depending on phase) on the ground floor) it is also quite clear that it housed an extended family (cf. Faust 2012: 112, 159–63; Yorburg 1975). While different density coefficients have been employed in the scholarly literature (for example Brown 1987; Ember and Ember 1995; Naroll 1962; Watson 1979: 191), even opting for the lowest one would mean that the structure housed a family of a few generations (the biblical beth av, or ‘house of the father’). Whether one wishes to examine the gross area of the house, the net area, or even the net roofed area (67–67.6 sq m on the ground floor), the figures are sufficient for a large family, especially given the existence of an upper storey. Moreover, the house should not be viewed in isolation. We have already seen that the house belongs within a small group of very large Iron Age houses (highest 1%, see above). Since families, clearly nuclear ones, lived in structures of a gross area of some 50 sq m (and less), the mere fact that this house is at least four times...
larger is quite suggestive. While these figures relate to the gross area of the house(s), we must stress that it does not matter how one wishes to manipulate the data, the differences will remain. At Tell en-Nasbeh (biblical Mizpah), for example, Zorn (1993: 300) noted that the gross area of the 22 buildings he studied was 59 sq m (ground floor), i.e., a little more than a quarter of the gross area of Building 101 (also ground floor only). The ratio does not significantly change when one examines the data differently. Thus, the net roofed area (ground floor only) of these 22 houses was 23 sq m, while the net roofed area (ground floor) of Building 101 was 67–67.6 sq m, about three times the size.

Notably, the above relative comparison means that even if one wishes to reject all the suggested density coefficients, claiming that density is culturally-laden, the relative size of Building 101, compared to hundreds of houses that belonged to the very same society or culture, would still indicate that a large family dwelt in this specific building. After all, if a house of 50 sq m (gross) was sufficient for a family in Iron Age Israel — even a nuclear one — clearly more people lived in Building 101. Not only is the size of the building too large for a nuclear family, even a theoretical suggestion that the structure’s magnitude was merely for display purposes, i.e., conspicuous consumption (cf. Trigger 1990), should be rejected on a number of grounds.

First of all, many wealthiest families in agrarian societies were large and usually maintained an extended family structure; they often also absorbed additional members (e.g., Netting 1982; Yorburg 1975; see also Faust 2012: 110–12, 159–66). Moreover, the actual evidence unearthed within the building, for example the finding of the remains of three looms, seems to hint that there were at least three mature women in the house (for the association between women and looms, see Cassuto 2004; Faust 2002; see also Bourdieu 1977; Meyers 2013: 133, 141). The magnitude of the surpluses that were stored in the building also greatly exceeds the needs of a nuclear family. Finally, the above mentioned changes in the inner division of the house are also consistent with use by an extended family, the needs of which would have changed over time.

The structure and size of the Iron Age Israelite family has received a great deal of scholarly attention over the years (e.g., Borowski 2003; Brody 2011; Faust 1999a; 2012; Hardin 2010: 178–82; King and Stager 2001; Meyers 2013: 109–13; Routledge 2009; Schloen 2001; Stager 1985). And while there is a debate whether extended families lived in compounds during the Iron II or not, in the present case it is quite clear that an entire extended family lived in a single structure (and not in a compound). Interestingly, it was suggested in the past that large four-room houses served families with multi-generational continuity strategy, whereas small (and more prevalent) three-room houses served smaller, nuclear families of two generations only; this suggestion is supported by the finds here (e.g., Faust and Bunimovitz 2014: 151).

Internal divisions within the house

The overall use of the building hints at interesting divisions between north and south (or right and left). As noted, the northern sector was used mainly for storage, whereas the southern one served mainly for living, or to be more accurate, served what were probably regarded as feminine activities. The western sector was also divided, in the same manner, between north and south. One could suggest that the reason for the division was climatic: in the Middle East temperatures tend to be high during most of the year and it would be preferable to use the northern sector for storage, in order to limit the exposure of the stored foodstuffs to heat. While this observation is correct, we find this explanation partial at best. First of all, the courtyard was unroofed and most of the northern sector was exposed to heat at least as much as the southern one, perhaps even more so as the doorways now opened to the south (the only room that was not exposed to the south was Room 101C, this further supports the suggestion that it was used to store liquids; cf. Dalman 1935: 251, 367). Furthermore, we must note that the mere existence of functional explanations does not negate symbolic ones (e.g., Hodder and Hutson 2003: 71). Given the clear pattern presented above, we would like to suggest that this above-mentioned division is (also?) a cosmological one, i.e., a division between inside and outside (where the outside world is male and the dwelling is female; Bourdieu 1977; cf. Meyers 2013) and between left (private) and right (storage), whereas left is the south and right is the north (as viewed when looking into the building from the outside; cf. Bourdieu 1977). While divisions of right versus left are less common than front versus back divisions (Douglas 1991: 290; see also Levinson 1996), they do exist and we would like to suggest that this is the case here too.

Another likely division is between the two storeys. While the lower floor served for storage, food preparation, weaving and additional activities, it is often
assumed that the upper storey served as the main living or sleeping area (cf. I Kgs 17:19, 23; II Kgs 4:10–11; Borowski 2003: 18; King and Stager 2001: 29, 35; cf. Bourdieu 1977), in this case it was clear that it was used (also?) for some administrative or trading (male) activity. Clearly, the upper floor was regarded as more distinguished (cf. II Kgs 4:10–11 and perhaps also I Kgs 17:8–23; see also various references to the word ‘elyon’ in the Bible; see also Avitsur 1976: 37–40; Bourdieu 1977). This division between left (private) and right (storage), and high/up (male) versus low/down (female), as well as the eastern orientation of the building itself (Faust 2001), are probably related to cosmology. Still, these are only preliminary observations and more studies, on additional houses, are required to support this suggestion (cf. Bourdieu 1977; Oliver 2003; Richards 1996; Waterson 1990).

‘Death’ and ‘decomposition’: the destruction and collapse of Building 101

‘On deathbed’

Using the biographic metaphor, we can say that the house matured, but although time left some marks, it was well-maintained. Damaged floors were repaired, walls plastered (see also Sapir 2017) and it was cleaned thoroughly (above). The death of the house was not a result of a lengthy period of deterioration (‘illness’) and, as we shall presently see, was quite sudden, even if a short (probably very short) period of distress preceded its final demise. The Assyrian invasion and perhaps even siege, gave the inhabitants some time to prepare (like a short illness, see above), but, after a brief period of attempts to resist, the death of the house was quick and the house ceased to exist. There was no long process of abandonment and deterioration before the end—only a short period of reorganization.

The distress is exemplified by the changes carried out on the eve of the destruction, mainly by the erection of the low, poor quality walls in the courtyard, as well as some additional changes (cf. crisis architecture; Driessen 1995; Zuckerman 2007). The partition walls were probably built in order to divide the building between the more private parts of the house and the storage spaces into which some people perhaps entered (Faust and Katz 2017: 4, 23, n.14). The apparent low quality of the walls (above) most likely resulted from the fact that the regular areas in which mud was procured were blocked and the builders had to improvise and make do with material at hand (Sapir et al. in press: 11–12). We suggest that this took place on the eve of the destruction, when the Assyrian army was already in the area.

It is also possible that the change in the use of some of the rooms occurred at this stage, as part of the preparations for the impending campaign (perhaps the turning of Room 101G into a storage room), but there is no direct evidence to support it. The fact that bitter vetch, typically regarded as low quality or animal food, was unearthed in a storage room in this elite dwelling, however, could be explained on the background of the distress caused by the impending Assyrian campaign (but this evidence should also not be overstretched since we are talking about the contents of one storage jar out of dozens of such vessels).

The ‘death’ of the building

Although death was not, as we have seen, completely unexpected, it was quick and sudden. The finds listed above were unearthed within a massive wall-fall, as were 36 arrowheads, hinting at the cause of the catastrophe, i.e., an Assyrian military campaign (cf. Faust 2008; Katz and Faust 2012; Tadmor 1985; Ussishkin 1982: Fig. 27).

The distribution of the arrowheads (Fig. 28), the vast majority of which (29 out of 36) were located in the courtyard, almost entirely in its northern side just south of wall F1162 and slightly to the east, seems to suggest that they were shot from the south, hit the wall and fell to the courtyard’s floor (further supporting the view that this area was unroofed). It is possible that the house was even partially captured by the Assyrian army, was breached in the south-east and it was from this area that the arrowheads were shot. This might explain the poorer preservation of walls in this area, than elsewhere.

While the house was destroyed by conflagration, the fire was not uniform (the temperatures were studied using FTIR; Berna et al. 2007; Forget et al. 2015; Friesem et al. 2014). It appears that the temperature in different parts of the building varied (see Fig. 29). While there is no clear pattern, most of the building was burnt at a temperature of some 400–500°C. There are some patches, especially in the courtyard and in some rooms, where the temperature was low (less than 400°C), or there was no firing at all. There are also quite a few places that were burnt in higher temperature (over 600°C), but those, too, were scattered in different places. As far as the foci of fire, it is difficult to judge whether there was a purpose behind it (more below), but the fire was not completely uniform.
The widespread firing of Building 101 is also evident in other types of finds. While over 75% of the flints studied so far from Building 101 were burnt, none of the flints unearthed in the partially excavated building to its north-west were (although it was also destroyed during the Assyrian conquest and the pottery was found smashed on the floor). The significance of this pattern is clear when compared to the finds in other excavation areas. While the analysis of the flints is still ongoing, it appears that both the number and percentage of burnt flints in other areas is much lower (apparently in the

Figure 27 The main ceramic forms unearthed in the debris within Building 101. The assemblage is typical of the late 8th century BC (drawings: Yulia Rodman; courtesy of the Tel ‘Eton Expedition).
range of 0–20%, based on the data available). A similar pattern was observed in the animal bones uncovered, as a much larger percentage of the bones analysed within the house were burnt. Thus, while the bones unearthed in Area A comprise only some 30% of the 8th century BC bones identified to date (above), the burnt bones from this area comprise 75% of the total burnt bones from this phase.

The ‘execution’ of Building 101

While it is not completely clear whether the destruction resulted from the fighting or was intentional (cf. Twiss et al. 2008; see also Cotiuga 2009; Gaydarska et al. 2012; Tringham 2005), the unique fate of Building 101 hints at the latter; the evidence seems to suggest that Building 101 — most likely the central building in the site — received ‘special treatment’ during the Assyrian conquest (for various archaeological manifestations of destruction and conquests, see Kreimerman 2016). We tentatively conclude that the structure was not burnt as part of a widespread fire that consumed the entire site, but was seemingly selected for thorough destruction. In some prehistoric instances, such unique burning of structures led to a suggestion that these structures were fired as part of ritual (‘killing’?) (e.g., Cotiuga 2009; Gheorghiu 2008; see also Gaydarska et al. 2012). It appears as if in this case the picture can be clarified since the historical circumstances of the destruction are better known. It is quite clear that the house was not fired by the inhabitants, nor by other members of the community, but rather by the Assyrian army. It is possible that this specific house was selected for special treatment — thorough destruction by fire — to symbolize the capitulation of the city and its subsequent destruction (cf. Wright 2016 for historical examples). Indeed, the Assyrian conquest was the end of the settlement on the mound itself, which was subsequently abandoned for at least 300 years. We would therefore like to suggest that the burning of the house amounted to the ritual killing of the city and was done on purpose.

Decomposition

The death was quite quick, but the subsequent decomposition was somewhat longer. Thus, while many arrowheads were found directly on the floor, some were found mixed in the rubble and wall-fall above it (Fig. 30), suggesting that the collapse was not immediate, and that after the destruction and abandonment, some arrowheads were still stuck in the walls, which only gradually collapsed. Patterns of fallen bricks and broken vessels are also indicative of the way the building collapsed (e.g., Fig. 31). For example, we are able to reconstruct the way each vessel we unearthed was broken; apparently, some vessels first fell and only then broke, while others were pressed into the stones that held them in their place and were broken there. Analysing the breakage pattern of all the vessels will eventually also allow us to understand the sequence of events that led to the destruction of the building.
to understand the destruction and collapse of the building.

Regeneration?
Interestingly, at some point after its destruction, some people returned and attempted a re-occupation on top of the debris. They apparently levelled some of the remains, finishing the process of collapse and built a few installations. This attempt, however, was short lived and the mound was shortly afterward abandoned until the 4th century BC, when a fortified structure was built on top of the remains, partially damaging them but partially also sealing them and preventing further damage.

Building 101 and the biographic approach
Following a biographic-like approach, the article presented the history of Building 101, incorporating some of the results of the study of its pre-planning (conception), construction (‘birth’), development and function (‘life’) and even destruction (‘death’) and subsequent collapse (decomposition). Although no more than a metaphor that cannot be followed precisely (Harris 1999), the biographic-like approach has a number of advantages.

First of all, the biographic approach forced us to examine all stages in the history of the building and to treat them within a larger whole; including phases for which the evidence was meagre and which often receive very cursory treatment in reports. Furthermore, this analytical approach directed us toward a finer assessment of the various stages themselves. Thus, whereas the birth-life-death metaphor was initially very general and used only to supply a general framework, as research advanced we had to probe deeper in order to justify it, and to make decisions about various activities and to which stage they should be attributed. The result is that in practice

Figure 28 Building 101: distribution of arrowheads (prepared by Tamar Olenick; courtesy of the Tel ‘Eton Expedition).
we now have seven stages rather than the initial four, and the various phases (birth-life-death) are now subdivided. Thus, rather than grouping all the activities that preceded the actual housing of the structure under one heading — ‘birth’ — this phase is now divided into ‘conception’ and ‘birth’, with each activity being assigned to a more specific sub-phase. The foundation deposit, for example, could no longer be attributed to a vague pre-housing phase and we now view it as marking the beginning of actual construction (i.e., later than the ‘conception’ phase). Similarly, the ‘death’ phase is now divided into ‘death’ and ‘decomposition’, and both are preceded by the section ‘on deathbed’, which briefly describes the processes that immediately preceded the destruction of the house. These are but a few examples of how the biographic-like approach forced us to reconsider and refine our understanding of the history of the house. We therefore found the examination of the house in its totality worthwhile; that the whole is greater than the sum of its parts.

Moreover, while this article is first and foremost an initial report of the excavations of Building 101, we would like to stress that by taking a biographic-like approach we had an opportunity to analyse the house’s inhabitants not only as they functioned on the eve of the house’s destruction, which is commonly the focus of archaeological attention given the plethora of finds from such phases, but also to get a glimpse of the life-cycle of the family and the history of the inhabitants, which is a relatively understudied topic.

The biography of houses and the study of families

Domestic buildings house the basic kinship units of any society — families of various types. While modern families are typically less attached to their homes, as they move from one house to another quite easily and rarely live in the same structure for generations, traditional societies differ. Families in
such societies live in their houses for much longer, rarely move and, consequently, are often attached to their houses and treat them differently, in some cases even as a living thing (e.g., Hugh-Jones 1979; Kana 1980; Oliver 2003; Waterson 1990; see also Bailey 1990; 1996). But even when this is not the case, the association between structures and the kinship units housed in them is commonly strong.
(e.g., Oliver 2003; Ott 1992). As for Israelite society, the association between the house and the family is clearly exemplified by the society’s language: both the structure and the kinship unit that inhabited it are called bayit (‘house’) (cf. Schloen 2001: 71). As Yeivin (1954) suggested, the term was initially used for the dwelling of a family and was borrowed to denote a family living together. In Biblical Hebrew, therefore, the word ‘house’ (bayit) has two meanings. The first is ‘[T]he ordinary dwelling unit’ and the second ‘can signify a family line like the “house of Levy’” (Schaub 1996). Hence, anyone who establishes a family is building a ‘house’ (also Stager 1985). This seems to correspond with the uniquely dominant position of four-room houses in the built landscape of Iron Age Israel (e.g., Bunimovitz and Faust 2002; 2003; Faust 2006a; Faust and Bunimovitz 2003; 2014; Holladay 1992; 1997; Netzer 1992; Shiloh 1970; 1973; 1978; Stager 1985), which highlights the great potential that lies in the study of this type of house for the understanding of society at large. Interestingly, the association between the family and the house continues after death; the late Iron Age family tombs were often cut in the form of a four-room house, most likely serving as the house of the dead family members (Barkay 1999; Faust and Bunimovitz 2008; Mazar 1976: 4, n. 9).

Given the above, it is clear that in the course of their coexistence, the association between the physical house and the family (which embodies the concept of the bayit) is strengthened and it is sometimes difficult to differentiate between the two (cf. Ott 1992). The history of the building is to a large extent also the story of the family. Large and long-lived houses might therefore denote established and respected families (cf. Bailey 1990; 1996) and this is clearly the case with Building 101 that, like other elite Iron Age houses, was not only large and well-built but also existed for centuries, denoting continuity and status (Faust and Sapir n.d.; for other buildings see also Cahill 2003; Geva 1989). Similarly, we have suggested above that there might have been a connection between the inner configuration of the house, the kinship unit’s continuity strategy and the fact that four-room houses typically housed extended families with multi-generational strategy (whereas smaller three-room houses usually housed nuclear families; Faust and Bunimovitz 2014; see also Faust and Bunimovitz 2008: 161–62). This is clearly in line with the finds in Building 101.

We must stress that while references to the family are scattered throughout the article (the issue will receive more attention elsewhere), this article focuses on the building itself.

The governor’s residency: summary and conclusions
Building 101 was an elite Iron Age dwelling at Tel ‘Eton, as is apparent from its location, the quality of its construction and its plan, as well as the finds unearthed in it. Although initially only a ‘nickname’, the mounting evidence regarding all stages of the house, from the exceptional investment in its construction to the unique circumstances of its destruction, strongly suggest that it was indeed the governor’s residency. The findings of bullae, sealings and a seal in the house, which are rare finds in 8th century Judah, further support this interpretation, as do the food surpluses uncovered. The governor was most likely responsible for the local administration in the region (and some administration clearly existed in Judah at the time) and probably also for the taxation and some of the decision-making concerning the city, construction work etc. (for social structure and composition in Iron Age cities, see Faust 2012: 110–17 and references). Still, whether it was the actual governor who lived in this house, or another elite family, is only of secondary importance for the main purpose of this article.

Conception
The structure was carefully planned. It was located on the highest point on the mound, disregarding other, or previous, structures that existed in the area and was probably visible from most directions. In two places where we penetrated below the structure’s floors we encountered only fills and make-up and it is clear that the construction of the building involved massive preparations; first of all the levelling of the previous Iron I remains and the placing of different types of material in different places, following a pre-conceived plan.

Birth
A foundation deposit was unearthed below the courtyard, apparently marking the beginning of actual construction. This stage involved constructing continuous foundations on top of the various make-up materials prepared in the earlier phase. Above the foundations, walls were built using quality building materials. In the corners and edges of walls, ashlar stones were used, while the inner walls were topped by high quality mudbrick courses (Sapir et al. in press). The roof beams, at least during the final phase, were probably made of olive wood. The house was oriented to
the east (and slightly to the north), in accordance with the preference of the society under discussion, this also shows that the building was built as desired and that no limitations were imposed on it. It appears that (at least in places where the excavations exposed the area outside the building, see Fig. 4) it was built without contact with any other houses; the only exception is its north-western side, where another structure was partially built nearby. Still, we must note that both houses had their own outer walls and where the two houses ‘touched’ each other, each had its own wall, no walls were shared, further supporting its elite status.

The building was also pre-planned in terms of the architectural design. Some rooms had two doorways leading to them, with the idea that these spaces could be sub-divided in the future without much work and without endangering the physical integrity of the structure. Changing the use of rooms is well known in Iron Age buildings, resulting from the life-cycle of the extended family, and it appears that the planners took these needs into consideration when planning the structure, enabling maximum future flexibility.

Life

Indeed, in the course of the structure’s long life at least one space was sub-divided after the structure was built as part of this process, probably to accommodate new needs, resulting from changes in the size or composition of the family. The new wall (F1048) was made of high quality mudbricks, though different from the mudbricks that were used during the original constructional phase. Additional identified changes include the rebuilding of an inner wall, blocking of a room and the erection of a platform in the corner of Room 101B. Given the modularity of the planning, it is possible that additional walls (like F1048) were built and dismantled over the years, according to the life-cycle of the extended family living there. The structure functioned as an elite dwelling throughout its existence. It was constantly cleaned and damaged components were fixed. Its maintenance continued until its destruction.

Finally, at some point toward the end of the structure’s life, the courtyard was subdivided into a number of spaces by the construction of low walls. The new walls, however, were built using mudbricks of much poorer quality, perhaps because these walls served for a shallow partition and did not carry a roof. The difference in material could have resulted from an incidental change in the material used, or because of the hastiness in which the construction was done in anticipation of the approaching Assyrian army. We find the last explanation more in line with the available evidence and perhaps construction was done when the area was already unsafe, and hence, the builders used a different source for the mud and different techniques in the preparation of the mudbricks.

At this stage, the structure still served as an elite dwelling and housed an extended family, as is clearly evident by the finds. The northern sector was used mainly for storage of food-stuffs. The southern sector was used for living, mainly for feminine activities. One room in this sector was used for food preparation and weaving, whereas the other room was devoid of practically any finds and was, perhaps, used to house unclean people until they were purified by the pouring of water. Since pottery could become impure, it was not used in this room, and it appears that most of the vessels there were made of perishable materials. The western sector seems to parallel the above mentioned division into north and south. The northern room in this sector was packed with storage jars, whereas the southern one contained a much more limited number of artefacts. It appears that one of the rooms in the upper storey had an official function, as a number of bullae or sealings were found there; other rooms probably served for sleeping. As for the courtyard, the finds there were sparser. Most noteworthy is the concentration of vessels found in the east, including an installation, and the looms that stood near the northern wall. We tentatively suggest, therefore, that the finds are indicative of an interesting conceptual division of space, i.e., open courtyard versus inner closed spaces, and within the closed spaces between north/right (storage) and south/left (living, feminine), and apparently, also between up (upper storey, male?), and down (to a large extent feminine?).

Given this division, it is likely that low-quality partition walls that were built on the eve of the destruction were meant to increase privacy for the feminine part, as more people did perhaps visit the ‘public’ section (perhaps having some access to the storage rooms).

Death

Although preceded by short ‘notice’, the death of the house was quick, the house being destroyed in a heavy conflagration. The fire, however, was not uniform and some rooms (spaces) suffered more than others. The attack on the city was apparently carried out mainly from the south (or south-east); most arrowheads were found in the northern part of the courtyard, where they fell — probably after hitting the
Decomposition

Collapse, however, continued for some time and many of the finds were found not on the floor but within the debris, possibly attesting to the continual process of deterioration. The brief and short-lived attempt of re-occupation on the remains even speeded up the process of deterioration, as squatters levelled the remains and scavenged building materials. The remains were finally sealed in the late Persian period, under the foundations of a fortified structure.

Acknowledgements

The writing of this article and the research leading to it were supported by a grant from the Israel Science Foundation (no. 284/11; ‘The Birth, Life and Death of a Four-Room House at Tel ‘Eton’).

Many people contributed to the excavations and the study of the material. A full list of staff and specialists will be published in the final report; here we would like to thank the Tel ‘Eton expedition and laboratory staff, students from Bar-Ilan University, Wheaton College, Franklin and Marshall College, the Open University of Israel and volunteers who participated in the excavations, as well as many of the inhabitants of the nearby settlements. Area A, in which Building 101 is located, was supervised by Joshua Walton, Aaron Greener, Garth Gilmour, Jonathan Adler, Oriah Amihai and Michal Marmelshtein; they were assisted by Naveh Yogev, Holly Haller, Pirchia Eyall, Zev Farber and Daniel Frese. Many samples were studied in the chemistry laboratories of Yitzhak Mastai, Doron Aurbach and Mordechai Livneh at Bar-Ilan University, and we thank them and their staff.

We would also like to thank Dan Cabanes and David Friesem who studied formation processes during the 2009 season and supplied some of the FTIR results and additional information, and to Ruth Shahack-Gross, who supervised them as part of the ERC Ancient Israel project, and Israel Finkelstein and Steve Weiner, who headed the project. D. Langgut acknowledges the support of the Israel Science Foundation grant no. 2141/15 (‘New Equipment Grant’).

Finally, we would like to thank the anonymous reviewers and the editor for their constructive comments.

ORCID

Avraham Faust \(\text{http://orcid.org/0000-0001-7301-7135} \)
Hayah Katz \(\text{http://orcid.org/0000-0001-5303-7235} \)
Assaf Avraham \(\text{http://orcid.org/0000-0002-1073-7888} \)
Michael Tzesarsky \(\text{http://orcid.org/0000-0001-5282-0332} \)

References

understanding deposition on and off the Bulgarian Tell of Kosharda. *Archaeologia Bulgarica* XVI: 27–58.

Meyuhas, Y. 1937. The fallahs — fallah life compared to the life of Jews during the Bible and Talmudic periods. Jerusalem: Dvir (Hebrew).

